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Chapter 4
Estimation of Spatial Distribution of Disturbances

Yalcin Bulut, Omer F. Usluogullari, and Ahmet Temugan

Abstract The information of spatial distribution of unmeasured disturbances is utilized in controller and observer design. In
reality, due to the complexity in the systems, this information is seldom known a priori. Our focus in this study is to estimate
the spatial distribution of disturbances from available measurements using a correlations approach that is developed in
Kalman filter theory. In this approach one begins by “guessing” a filter gain and then the approach calculates the disturbance
covariance matrices from analysis of the resulting innovations. This paper reviews the innovations correlations approach and
examines its merit to localize the disturbances.

Keywords Disturbance localization • Process noise • Measurement noise • Kalman filter

4.1 Introduction

The basic idea in estimation theory is to obtain approximations of the true response by using information from a model
and from any available measurements. The mathematical structure used to perform estimation is known as an observer. The
optimal observer for linear systems subjected to broad band disturbances is the Kalman Filter (KF), [1]. In the classical
Kalman filter theory, one of the key assumptions is that a priori knowledge of the spatial distribution of distriburbances and
noise covariance matrices are known without uncertainty. In reality, due to the complexity in the systems, this information
is seldom known a priori. The objective of this study is to estimate the spatial distribution of distriburbances and the noise
covariance matrices using correlations approaches. The two correlations approaches that have received most attention in
the noise covariance estimation problem are based on: (1) correlations of the innovation sequence and (2) correlations of
the output. In the innovations approach one begins by “guessing” a filter gain and then the approach calculates the noise
covariance matrices from analysis of the resulting innovations. The correlations approaches to estimate the covariance
matrices of process and measurement noise for Kalman Filtering from the measured data began soon after introduction
of the filter. Perhaps the most widely quoted strategies to carry out the estimation of noise covariance matrices are due to
Mehra [2] and the subsequent paper by Carew and Bellanger [3]. A noteworthy contribution from this early work is the
contributions by Neethling and Young [4], who suggested some computational adjustments that could be used to improve
accuracy. Recently, some other contributions to the Mehra’s approach on the estimation of noise covariance matrices are
presented. Odelson, Rajamani and Rawlings applied the suggestions of Neethling and Young’s on Mehra’s approach and
used the vector operator solution for state error covariance Riccatti equation of suboptimal filter, [5]. Akesson et al. extended
their work for mutually correlated process and measurement noise case, [6]. Bulut, Vines-Cavanaugh and Bernal compared
the performance of the output and innovations correlations approaches to estimate noise covariance matrices, [7].

The paper is organized as follows: the next section provides a brief summary of the KF particularized to a time invariant
linear system with stationary disturbances (which is a condition we have implicitly assumed throughout the previous
discussion). The following section reviews the innovations correlations approach for disturbance localization and the paper
concludes with a numerical example.

Y. Bulut (!) • O.F. Usluogullari • A. Temugan
Civil Engineering Department, Turgut Ozal University, Ankara, Turkey
e-mail: ybulut@turgutozal.edu.tr

© The Society for Experimental Mechanics, Inc. 2015
R. Allemang (ed.), Special Topics in Structural Dynamics, Volume 6, Conference Proceedings
of the Society for Experimental Mechanics Series, DOI 10.1007/978-3-319-15048-2_4

49

ybulut@turgutozal.edu.tr



50 Y. Bulut et al.

4.2 The Kalman Filter

Consider a time invariant linear system with unmeasured disturbances w(t) and available measurements y(t) that are linearly
related to the state vector x(t). The system has the following description in sampled time

xkC1 D Axk C Bwk (4.1)

yk D Cxk C vk (4.2)

where A " Rnxn, B " Rnxr and C " Rmxn are the transition, input to state, and state to output matrices, yk " Rmx1 is the
measurement vector and xk " Rnx1 is the state. The sequence wk " Rrx1 is the disturbance known as the process noise
and vk " Rmx1 is the measurement noise. In the treatment here, it is assumed that these are mutually correlated Gaussian
stationary white noise sequences with zero mean and known covariance matrices, namely

E .wk/ D 0 (4.3)

E .vk/ D 0 (4.4)
and

E
!
wkwTj

"
D Qıkj (4.5)

E
!
vkv

T
j

"
D Rıkj (4.6)

E
!
wkvTj

"
D Sıkj (4.7)

where ıkj denotes the Kronecker delta function, andE .!/ denotes expectation.Q and R are covariancematrices of the process
and measurement noise and S is cross-covariance between them. For the system in Eqs. 4.1 and 4.2, the KF estimate of the
state can be computed from

bxkC1 D Abxk CK .yk " Cbxk/ (4.8)

wherebxk is the estimate of xk and K is the (steady state) KF gain that can be expressed in a number of alternative ways, a
popular one is

K D
#
APCT C BS

$ #
CPCT CR

$!1
(4.9)

where P, the steady state covariance of the state error, is the solution of the Riccati equation

P D APAT "
#
APCT C BS

$ #
CPCT CR

$!1 #
APCT C BS

$T C BQBT (4.10)

The KF provides an estimate of the state for which trace of is minimal. The difference between measured and estimated
output, namely ek D yk " Cbxk in Eq. 4.8 is known as innovations sequence of the filter which is a white process. The filter
is initialized as follows

bx0 D E .x0 / (4.11)

4.3 Innovations Correlations Approach

We begin with the expression for the covariance function of the innovation process (ek) for any stable observer with gain K0.
As initially shown by Mehra [2] this function is

Lj D CPCT CR j D 0 (4.12)
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Lj D CA
j
PCT C CA

j!1
BS ! CAj!1

K0R j > 0 (4.13)

where P the covariance of the state error in the steady state, is the solution of the Riccati equation

P D APACK0RK
T
0 C BQBT !K0SB

T ! BSTKT
0 (4.14)

and

A D A !K0C (4.15)

Applying vec operator to both sides of the auto-correlation function of the innovations in Eqs. 4.12, 4.13 one obtains

vec
!
Lj
"
D .C ˝ C/ vec

!
P
"
C vec.R/ j D 0 (4.16)

vec
!
Lj
"
D
#
CA

j ˝ C
$
vec

!
P
"
C
#
BT ˝ CA

j!1$
vec.S/ !

#
I ˝ CA

j!1
K0

$
vect.R/ j > 0 (4.17)

and applying vec operator to error covariance equation in Eq. 4.14, one has

vec
!
P
"
D ŒI!. A˝ A/!!1

%
.K0 ˝K0/ vec.R/C B ˝ Bvec.Q/ ! .B ˝K0/ vec.S/ ! .K0 ˝ B/vec

!
ST
"&

(4.18)

Substituting Eq. 4.25 into Eqs. 4.23 and 4.24, and adding the terms related to ST to the terms related to S and canceling ST ,
one finds

vec
!
Lj
"
D
h
h
Q
j h

S
j h

R
j

i
2

4
vec.Q/

vec.S/

vec.R/

3

5 (4.19)

where

h
Q
j D .C ˝ C/ ŒI!. A˝ A/!!1 .B ˝ B/ j D 0 (4.20)

h
Q
j D

#
C ˝ CA

j
$
ŒI!. A˝A/!!1 .B ˝B/ j > 0 (4.21)

hSj D !2I .C ˝ C/ ŒI!. A˝ A/!!1 .B ˝K0/ j D 0 (4.22)

hSj D
#
BT ˝ CA

j!1$ ! 2I
h#
C ˝ CA

j
$h
I !

#
A˝ A/!!1 .B ˝K0/

i
j > 0 (4.23)

hRj D .C ˝ C/ ŒI!. A˝ A/!!1 .K0 ˝K0/C I j D 0 (4.24)

hRj D
#
C ˝ CA

j
$
ŒI!. A˝ A/!!1 .K0 ˝K0/ !

#
I ˝ CA

j!1
K0

$
j > 0 (4.25)

Listing explicitly the correlation functions in Eq. 4.26 for lags j D 1; 2; ::p and writing in matrix form one has

HX D L (4.26)
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where

H D

2

6666664

h
Q
0 h

S
0 h

R
0

h
Q
1 h

S
1 h

R
1

h
Q
2 h

S
2 h

R
2

:::
:::

:::

h
Q
p h

S
p h

R
p

3

7777775
; L D

2

666664

vec .L0/
vec .L1/
vec .L2/

:::

vec
!
Lp
"

3

777775
; X D

2

4
vec.Q/

vec.S/

vec.R/

3

5 (4.27)

Estimates of Q, S and R can be obtained from Eq. 4.26. From its inspection, one finds that H has dimensions
m2px

!
r2 Cm2 Cmr

"
. The sufficient condition for the uniqueness of the solution of Eq. 4.26 is defined as follows in the

general case; the number of unknown parameters in Q and Shave to be smaller than the product of number of measurements
and the state. The error in solving Eq. 4.26 for X is entirely connected to the fact that the L is approximate since it is
constructed from sample correlation functions of the innovations which are estimated from finite duration signals, namely

bLj
defD E

#
eke

T
k!j

$
D 1

N ! j

N!jX

kD1
eke

T
k!j (4.28)

where N is the number of time steps. Substituting bL as the estimate of L, the solution of Eq. 4.26 can be presented as in the
following.

Case #1 mn "
!
r2 Cmr

"
(4.29)

In this case H is full rank and there exists a unique minimum norm solution for a weighting matrix I given in the following,

bX D
!
HTH

"!1
HTbL (4.30)

Case#2 mn <
!
r2 Cmr

"
(4.31)

In this case the matrix is rank deficient, and the size of null space of H can be calculated from t D r2 !mn. The solution is
written as follows,

bX D bX0 C nul l.H/Y (4.32)

where bX0 is the minimum norm solution given in Eq. 4.30 and Y"Rtx1 is an arbitrary vector. Therefore, we conclude Eq. 4.26
has infinite solution whenmn <

!
r2 Cmr

"
. We note that the innovations correlations approach allows to enforce the positive

semi-definiteness when solving for Q, S and R from Eq. 4.26.

4.4 Numerical Experiment: Five-DOF Spring Mass System

In this numerical experiment we use the five-DOF spring mass system depicted in Fig. 4.1 in order to examine the innovations
correlations approach for the spatial distribution of distriburbances and noise covariance matrices.

We assume that true stiffness and mass values of the spring-mass system are given in consistent units as ki D 100 and
mi D 0:05, respectively. The un-damped frequencies of the system are depicted in Table 4.1.

We obtain results for output sensors at the third masses, which are recording velocity data at 100 Hz sampling.

Case I
The unmeasured disturbances are acting on the masses #2 and #4. The measurement noise is prescribed to have a root-mean-
square (RMS) equal to approximately 10 % of the RMS of the response measured (RD 0.030). Unmeasured disturbances
and measurement noise are assumed to be mutually uncorrelated, with the covariance matrices,
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Fig. 4.1 Five-DOF spring mass
system, mi D 0:05, ki D 100 (in
consistent units). Damping is 2%
in all modes

Table 4.1 The un-damped
frequencies of the spring mass
system

Frequency no. Frequency (Hz)

1 0.582
2 1.591
3 2.851
4 3.183
5 3.434

Fig. 4.2 Disturbance covariance
estimates ( OQ) for 30 simulations

Q D

2

666664

0 0 0 0 0

0 9 0 0 0

0 0 0 0 0

0 0 0 25 0

0 0 0 0 0

3

777775
R D 0:030 S D 0

The arbitrary filter gain K0, that is chosen such that eigenvalues of the matrix .A !K0C/ are assumed to have the same
phase as those of A but with a 20% smaller radius. Eighty lags of correlation functions of innovations process is taken
into consideration and the sample innovation correlations functions are calculated using 600 s of data. Thirty simulations
are carried out and the disturbance covariance matrices are calculated from innovations correlations approach based on the
assumption that the distribution of the unmeasured disturbances, namely input to state matrix (B) is known. The disturbance
covariance estimates obtained from the innovations correlations approach are presented in Fig. 4.2.

Case II
In addition to the noise covariance matrices given in Case I, it’s assumed that the locations of the disturbances are also
unknown (B matrix is used as I5!5). The mean value of the disturbance covariance matrix obtained from 30 simulations is
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bQ D

2

666664

0:12 0 0 0 0

0 9:46 0 0 0

0 0 0:05 0 0

0 0 0 24:13 0

0 0 0 0 0:38

3

777775

It’s obvious that the large diagonal elements at positions 2 and 4 point to the position of the disturbances.

4.5 Conclusions

This paper attempts to give a concise description of innovations correlation approach for estimation of noise covariance
matrices using Kalman filter. The classical innovations covariance technique to estimate the noise covariance matrices from
output measurements was reviewed. The method leads to the solution of a linear system of equations based innovations
correlation function. The operating assumptions of the method are that the system is linear time invariant and it is subjected
to unmeasured Gaussian stationary disturbances and measurement noise, which are mutually correlated. In the numerical
example signals with duration on the order of 100 times the period of the slowest mode proved inadequate. When the
duration is 300 times the fundamental period the mean of 30 simulations proved in good agreement with the covariance of the
disturbances. Numerical results suggest that the method can be effectively used for disturbance localization and covariance
estimation.
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