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ABSTRACT   
In the classical Kalman filter theory, one of the key assumptions is that a priori knowledge of the system model, which 
represents the actual system, is known without uncertainty. Our focus in this research is to estimate the state of a system that 
is subjected to stochastic disturbances by using an erroneous model along with the available stored measurements. We 
examine two approaches that take the effects of uncertain parameters into the account since these uncertain parameters 
degrade the estimate of the state. In the first approach, the errors in the nominal model, which are approximated by fictitious 
noise and covariance of the fictitious noise, are computed by using stored data. It is premised that the norm of discrepancy 
between correlation functions of the measurements and their estimates from the nominal model is minimum. The second 
approach involves the identification of a Kalman filter model on the premise that the norm of discrepancy between the 
measurements and their estimates is minimum. This paper reviews the two approaches and illustrates their performances 
numerically. 
 
1.  Introduction 
The basic idea in estimation theory is to obtain approximations of the true response by using information from a model and 
from any available measurements. The mathematical structure used to perform estimation is known as an observer. The 
optimal observer for linear systems subjected to broad band disturbances is the Kalman Filter (KF), [1]. In the classical 
Kalman filter theory, one of the key assumptions is that a priori knowledge of the system model, which represents the actual 
system, is known without uncertainty. In reality, due to the complexity in the systems, it is often impractical (and sometimes 
impossible) to model them exactly. Therefore, there is considerable uncertainty about the system model and the error-free 
model assumption of classical Kalman filtering is not realistic in applications. Methods for addressing the Kalman filtering 
with model uncertainty can be classified into two groups: (1) Robust Kalman Filtering (RKF), (2) Adaptive Kalman Filtering. 
The key idea in RKF is to design a filter such that a range of model parameters are taken into account. The formulation of 
RKF requires solving two Riccati equations that is computationally intensive and impracticable in systems of large model 
size, [2]. The adaptive Kalman filtering can be categorized into two subgroups. One is simultaneous estimation of the 
parameters and the state, which is applicable in two ways: (1) The bootstrap approach, (2) The combined state and parameter 
estimation approach. In the bootstrap approach, the estimation is carried out in two steps. In the first step the states are 
estimated with the assumed nominal values of the parameters. In the second step the parameters are calculated using the 
recent estimates of the state from step one in addition to measurements, [3]. In the combined state estimation approach, the 
unknown parameters are augmented to the state vector for their online identification. This idea was initially introduced by 
Kopp and Orford [4], who derived a recursive relationship for the updated estimates of the parameters and state as a function 
of measurement. Since the problem posed as nonlinear, nonlinear filtering techniques such as extended Kalman filter (EKF) 
are used to obtain the combined estimates of parameters and state. The other approach in adaptive Kalman filtering, instead 
of estimating the uncertain parameters themselves, includes the effect of the uncertain parameters in state estimation, In this 
approach, the model errors are approximated by fictitious noise and the covariance of the noise is tuned based on an 
analytical criteria. To the best of the writer's knowledge, this idea is first applied by Jazwinski [5] who determined the 
covariance fictitious noise so as to produce consistency between theoretical statistics of Kalman filter innovations and its 
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experimental estimates. 
 
The objective of this study is to address the uncertainty issue in model that is used in Kalman filtering. We examine the 
feasibility and merit of two approaches that takes the effects of the uncertain parameters of the nominal model into account in 
state estimation. In the first approach, the system is approximated with an equivalent stochastic model and the problem is 
addressed in off-line conditions. The model errors are approximated by fictitious noise and the covariance of the fictitious 
noise is calculated using a correlation based approach that minimizes of the norm of discrepancy between correlations 
function of measurements and their estimates from the nominal model. The second approach approximates the system with 
an equivalent Kalman filter model and the filter gain is calculated using the data on the premise that the norm of 
measurement error of the filter is minimum.  
 
The fictitious noise approach examined calculates the noise covariance matrices using correlations approaches. The two 
correlations approaches that have received most attention in the noise covariance estimation problem are based on: 1) 
correlations of the innovation sequence and 2) correlations of the output. In the innovations approach one begins by 
"guessing" a filter gain and then the approach calculates the noise covariance matrices from analysis of the resulting 
innovations. The correlations approaches to estimate the covariance matrices of process and measurement noise for Kalman 
Filtering from the measured data began soon after introduction of the filter. Perhaps the most widely quoted strategies to 
carry out the estimation of noise covariance matrices are due to Mehra [6] and the subsequent paper by Carew and Bellanger 
[7]. A noteworthy contribution from this early work is the contributions by Neethling and Young [8], who suggested some 
computational adjustments that could be used to improve accuracy. Recently, some other contributions to the Mehra's 
approach on the estimation of noise covariance matrices are presented. Odelson, Rajamani and Rawlings applied the 
suggestions of Neethling and Young's on Mehra's approach and used the vector operator solution for state error covariance 
Riccatti equation of suboptimal filter, [9]. Akesson et al. extended their work for mutually correlated process and 
measurement noise case, [10]. Bulut, Vines-Cavanaugh and Bernal compared the performance of the output and innovations 
correlations approaches to estimate noise covariance matrices, [11]. 
 
The paper is organized as follows: the next section provides a brief summary of the KF particularized to a time invariant 
linear system with stationary disturbances (which is a condition we have implicitly assumed throughout the previous 
discussion). The following section reviews two stochastic error modeling approaches for state estimation and the paper 
concludes with a numerical example.  

 
2.  The Kalman Filter  
Consider a time invariant linear system with unmeasured disturbances )(tw  and available measurements )(ty  that are 
linearly related to the state vector )(tx . The system has the following description in sampled time 

 

kkk BwAxx ++ =1          (1) 
                             kkk vCxy +=                                           (2) 

 where nxnA Rε , nxrB Rε  and mxnC Rε  are the transition, input to state, and state to output matrices, 𝑦!   𝜀  R!"!  is 

the measurement vector and 1nx
kx Rε  is the state. The sequence 1rx

kw Rε  is the disturbance known as the process noise 

and 1mx
kv Rε  is the measurement noise. In the treatment here, it is assumed that these are mutually correlated Gaussian 

stationary white noise sequences with zero mean and known covariance matrices, namely 
 
                                        0=)( kwE                                                 (3) 

                          0=)( kvE                                                  (4) 
 and 

 
                                        kj

T
jk QwwE δ=)(  (5) 

                                        kj
T
jk RvvE δ=)(  (6) 

                                        kj
T
jk SvwE δ=)(  (7) 



Proceedings of the IMAC-XXX, January 30 to February 2, 2012, Jacksonville, Florida, USA  
Society of Experimental Mechanics 

 
 where kjδ  denotes the Kronecker delta function, and )(⋅E  denotes expectation. Q  and R  are covariance matrices of 

the process and measurement noise and S  is cross-covariance between them. For the system in eqs.1 and 2 the KF estimate 
of the state can be computed from 

 
                                 )ˆ(ˆ=ˆ 1 kkkk xCyKxAx −++  (8) 

 where kx̂  is the estimate of kx  and K  is the (steady state) KF gain that can be expressed in a number of alternative 
ways, a popular one is 

 
        1))((= −++ RCPCBSAPCK TT  (9) 

 where P , the steady state covariance of the state error, is the solution of the Riccati equation 
 
         TTTTTT BQBBSAPCRCPCBSAPCAPAP ++++− − )())((= 1  (10) 

The KF provides an estimate of the state for which trace of is minimal. The difference between measured and estimated 
output, namely kkk xCye ˆ= −  in Eq.8 is known as innovations sequence of the filter which is a white process. The filter is 
initialized as follows 

 
        )(=ˆ 00 xEx    (11) 

 
3.  Stochastic Modeling of Uncertainty  
We suppose that the uncertainty in the state estimate, in addition to the disturbances, derives from error in the matrices of the 
state space model. Specifically, we consider the situation given by 

 
                          knknk wBBxAAx )()(=1 Δ++Δ++  (12) 
                                      kkk vCxy +=  (13) 

 where nA  and nB  are nominal model matrices; AΔ  and BΔ  error matrices and we assume that the noise covariance 

and error matrices are unknown. Our objective is to obtain an estimate of the state kx  using the information of nominal 

model matrices and stored data of measurement sequence ky .  
 
3.1  Fictitious Noise Approach  
An approximation of the state sequence of the system in Eq.12-13 can be obtained from an equivalent stochastic model, 
namely 

 
                                  kknk wxAx ++ =1                                            

(14) 
                           kkk vxCy +=                                              

(15) 
Suppose that kw  and kv  are white noise sequences, with covariance matrices Q  and R , respectively and S  is the 

cross-covariance between them. The equivalent disturbance kw  can be obtained by comparing Eqs.12 and 14, that is 
 
 kkk BwxAw +Δ=    (16) 

We note that since the state sequence kx  is not a white process and the white noise approximation of kw  in Eq.16 is 
theoretically not correct. However, we examine the merit of using fictitious noise covariance matrices that make the output 
correlations of the actual system and equivalent model approximately equal. If the Q  and R  are known, then the KF can 
be applied to the equivalent stochastic model in Eqs.14-15 to obtain an estimate of the state. Since the actual system and 
equivalent model are stochastic systems, the outputs ky  and ky  can be characterized with their correlations functions. 
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Therefore, one can calculate covariance of kw  and kv  using the correlations approaches on the premise that the norm of 
discrepancy between correlation functions of ky  and ky  is minimum, namely minimizing the cost function   
 
                                           )()(= ycorrycorrJ −                                     (17)    

The drawback of output correlations approach is that the calculations of the Q  and R  matrices are performed in two 
steps and it does not allow to force positive definitiveness of the solution for these matrices. Moreover, the output 
correlations approach requires very long data to obtain accurate estimates of noise covariance matrices since the 
measurements are generally overly correlated, [11]. Another approach to this problem uses the correlations of innovations 
process. In this approach, the available measurements are filtered with an arbitrary gain and the correlations of resulting 
innovations are used. Suppose that the measurements ky  and ky  are filtered thorough an arbitrary filter, in which we 

denote the gain as 0K  and resulting innovations processes for ky  and ky  are denoted as ke  and ke  respectively. 

In this case, the covariance of kw  and kv  are calculated on the premise that the norm of discrepancy between 

correlation functions of ke  and ke  is minimum, namely minimizing the cost function  
 

                                       )()(= ecorrecorrJ −                          (18) 
The mathematical formulations of this approach is presented in the following. We begin with the expression for the 
covariance function of the innovation process for any stable observer with gain 0K . As initially shown by Mehra [6] this 
function is 

 
                        0== jRCPC T

j +L        (19) 
                  0>= 0

11 jRKACSBACCPAC jjTj
j

−− −+L  (20) 
 where P  the covariance of the state error in the steady state, is the solution of the Riccati equation 

 
 TTTTT KSBBSKBQBKRKAPAP 0000= −−++  (21) 

 and 
 
 CKAA n 0= −  (22) 

 Applying vec  operator  to both sides of the auto-correlation function of the innovations in Eqs.19-20 one obtains 
 
                0=)()()(=)( jRvecPvecCCvec j +⊗L  (23) 

0>)()()()()()(=)( 0
11 jRvectKACISvecACBPvecCACvec jjTj

j
−− ⊗−⊗+⊗L  (24) 

 and applying vec operator to error covariance equation in Eq.21, one has 
 

)]()()()()()()[()]([=)( 0000
1 TSvecBKSvecKBQBvecBRvecKKAAIPvec ⊗−⊗−⊗+⊗⊗− −  (25) 

Substituting Eq.25 into Eqs.23 and 24 , and adding the terms related to TS  to the terms related to S  and canceling TS , 
one finds 

 

 [ ]
⎥
⎥
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⎦

⎤
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⎣

⎡
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=)(
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hhhvec R
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S
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Q
jjL  (26) 

 where 
         0=)()]()[(= 1 jBBAAICChQj ⊗⊗−⊗ −  (27) 



Proceedings of the IMAC-XXX, January 30 to February 2, 2012, Jacksonville, Florida, USA  
Society of Experimental Mechanics 

 
        0>)()]()[(= 1 jBBAAIACCh jQ

j ⊗⊗−⊗ −  (28) 

          0=)()]()[(2= 0
1 jKBAAICCIhSj ⊗⊗−⊗− −  (29) 

         0>)]()]()[[(2)(= 0
11 jKBAAIACCIACBh jjTS

j ⊗⊗−⊗−⊗ −−  (30) 

         0=)()]()[(= 00
1 jIKKAAICChRj +⊗⊗−⊗ −  (31) 

         0>)()()]()[(= 0
1

00
1 jKACIKKAAIACCh jjR

j
−− ⊗−⊗⊗−⊗  (32)

 
 Listing explicitly the correlation functions in Eq.26 for lags pj ,..21,=  and writing in matrix form one has 

 
 LHX =  (33) 

 where 
 

(34)                                                      
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Estimates of Q , S  and R  can be obtained from Eq.33. From its inspection, one finds that H  has dimensions 

)( 222 mrmrpxm ++ . The sufficient condition for the uniqueness of the solution of Eq.33 is defined as follows in the 
general case; the number of unknown parameters in Q  and S  have to be smaller than the product of number of 
measurements and the state. The error in solving Eq.33 for X  is entirely connected to the fact that the L  is approximate 
since it is constructed from sample correlation functions of the innovations which are estimated from finite duration signals, 
namely 

 

                        T
jkk

jN

k

T
jkk

def

j ee
jN

eeE −

−

− ∑
− 1=

1=)(=L̂  (35) 

where N  is the number of time steps. Substituting L̂  as the estimate of L , the solution of Eq.33 can be presented as in 
the following.     

                                        Case #1 )( 2 mrrmn +≥                              (36) 
In this case H  is full rank and there exists a unique minimum norm solution for a weighting matrix I  given in the 
following, 

 
 LHHHX TT ˆ)(=ˆ 1−  (37) 

 
                                  Case#2 )(< 2 mrrmn +                         (38) 

In this case the matrix is rank deficient, and the size of null space of H  can be calculated from mnrt −2= . The solution 
is written as follows, 

 
   YHnullXX )(ˆ=ˆ 0 +  (39) 

where 0X̂  is the minimum norm solution given in Eq.37 and 1txRYε  is an arbitrary vector. Therefore, we conclude Eq.33 

has infinite solution when )(< 2 mrrmn + . Although a unique solution for Q  and S  does not exist when 

)(< 2 mrrmn + , any of the solution for Q , R  and S  from Eq.33, still gives the optimal Kalman gain. K  can be 
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calculated using classical approach which involves solving Riccati equation given in Eq.10 for error covariance, P  and 
obtaining K  from Eq.9. Moreover, since the kw  and kv  are fictitious, the uniqueness of the solution of the least square 
problem is not a concern, as long as the positive definitiveness of the covariance matrices are provided. Therefore, the 
information of actual covariance matrices of kw  and kv  does not apply any condition to the solution. For instance, one 

can force the equivalent disturbances kw  and measurement noise kv  noise to be mutually correlated, namely, 0≠S , 

although the actual system has mutually uncorrelated kw  and kv . We note that the innovations correlations approach 

allows to enforce the positive semi-definiteness when solving for Q , R  and S  from Eq.33.  
 
3.2  Equivalent Kalman Filter Approach  
An approximation of the state sequence of the system in Eq.12-13 can be calculated using a Kalman filter model that is 
constructed from the nominal model and available measurements. Suppose that operating condition is off-line and consider 
an output form Kalman filter is given, namely 

 
                        kknk KyxKCAx +−+ ˆ)(=ˆ 1  (40) 
                              kk xCy ˆ=ˆ  (41) 

where kŷ  is the measurement predictions of the filter. The main idea here, which is initially described by Juang, Chen and 

Phan [12], is to calculate the filter gain K  by minimizing the norm of the discrepancy between available measurement ky  

and its estimate kŷ  from the filter model is minimum, namely, minimizing the cost function  
                      
                                              yyJ ˆ= −                                  (42) 
As opposed to the fictitious noise approach, which involves solving a single least-squares problem, the equivalent Kalman 
Filter approach calculates the K  in two steps. In the first step markov parameters of the auto-regressive model are 
calculated by solving a least square problem. In the second step the K  is calculated using markov parameters of moving 
average model and solving another least square problem. For details the reader is referred to [12].  
 
4.  Numerical Experiment: Five-DOF Spring Mass System   
In this numerical experiment we use the five-DOF spring mass system depicted in Fig.1 in order to examine the uncertainty 
modeling methods for Kalman filtering.   
 

           
 

 Fig. 1. Five-DOF spring mass system, 0.05=im , 100=ik  (in consistent units). Damping is 2%  in all modes.  
  

We assume that true stiffness and mass values of the spring-mass system are given in consistent units as 100=ik  and 

0.05=im , respectively and take the spring stiffness values of the nominal model )( nA  as {80, 110, 90, 85, 110, 110, and 
105}. The un-damped frequencies of the system and the nominal model used in Kalman filtering are depicted in Table 1. 
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Table 1: The un-damped frequencies of the spring mass system and erroneous model. 

 
 
 
  
 
 
  
 

We obtain results for output sensors at the third masses, which are recording velocity data at 100Hz sampling. The 
measurement noise is prescribed to have a root-mean-square (RMS) equal to approximately 10% of the RMS of the response 
measured. Unmeasured excitations and measurement noise are assumed to be mutually uncorrelated, with the covariance 
matrices, 
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Fictitious noise approach is applied using correlations of innovations process. The arbitrary filter gain 0K , that is chosen 
such that eigenvalues of the matrix )( 0CKAn −  are assumed to have the same phase as those of nA  but with a 20%  
smaller radius. 80 lags of correlation functions of innovations process is taken into consideration and the sample innovation 
correlations functions are calculated using 600 seconds of data. The noise covariance matrices of the equivalent stochastic 
model is calculated as, 
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The output correlation function of the actual system and equivalent stochastic model are depicted in Fig.1. The Q , R  and 

S  are used to calculate a filter gain from the classical formulations of the Kalman filter and the state estimates are obtained 
from this filter. 

 

Frequency No. System Model % Change 
1 0.582 0.545 6.349 
2 1.591 1.594 0.184 
3 2.851 2.883 1.104 
4 3.183 3.119 2.008 
5 3.434 3.470 1.073 
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Fig. 2. The output correlation function of the five-DOF spring mass system. 
  
 

Since the optimal estimate of the state can only be calculated using a Kalman filter that is constructed error free model of the 
actual system and the true noise covariance matrices, the methods examined in this study are suboptimal. For the comparison 
of the methods, we take the discrepancy between state estimate from optimal Kalman filter and suboptimal state estimate, 
namely 

  
                          suboptimaloptimal xx ˆˆ= −ε  (43) 

 and define the filter cost as 
 
                          ))((= TEtraceJ εε  (44) 

 

                    
 

Fig. 3. Displacement estimate of the second mass 
  

The displacement estimate of the second mass from the fictitious noise and equivalent Kalman filter approaches are depicted 
in Fig.3. As can be seen examined methods give better estimates compare to the arbitrary filter. Histograms of filter cost from 
200 simulations for the examined methods and the arbitrary filter are depicted in Fig.4. As can be seen, the estimate from the 
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arbitrary filter is the worst with a mean of the filter cost 11.84=µ . The fictitious noise approach performs better compare 
to the equivalent Kalman filter approach. The mean of the filter cost from 200 simulations are 1.60  and 2.65 , 
respectively. 

 

          
 

Fig. 4. Histograms of filter cost from 200 simulations, a) Arbitrary filter b) Fictitious Noise Approach  
c) Equivalent Kalman Filter Approach 

  
5  Conclusions  
This paper attempts to give a concise description of two stochastic error modeling approaches for state estimation using 
Kalman filter that is formulated using an erroneous model. The operating assumptions are that the system is linear time 
invariant and it is subjected to unmeasured Gaussian stationary disturbances and measurement noise, which are mutually 
correlated. In the first approach, model errors, are approximated by fictitious noise and covariance of the fictitious noise, are 
calculated using the data on the premise that the norm of discrepancy between correlation functions of the measurements and 
their estimates from the nominal model is minimum. The second approach examined approximates the system with an 
equivalent Kalman filter model. The filter gain is calculated using the data on the premise that the norm of measurement error 
of the filter is minimum. The two approaches are applicable in off-line conditions where stored measurement data is 
available. It leads to the expression that the fictitious noise approach is more complex than the equivalent Kalman filter 
approach, however the differences are not crucial when computer implementation are considered. Examination results show 
that although the state estimates from these two approaches are suboptimal, both approaches perform better than an arbitrary 
filter. In general, the fictitious noise approach performs better than the equivalent Kalman filter approach. However, the 
performance of the fictitious noise approach depends on the length of the data. This is due to the fact that the output 
correlations are calculated from a finite length sequences, and the accuracy of the sample correlations increases with longer 
data. Therefore, when the sample correlations are not calculated with a good approximation, for instance short data is 
considered, the equivalent Kalman filter approach gives better state estimates for the same data. 
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