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ABSTRACT

The Kalman Filter (KF) is the optimal observer for linear systems subjected to broadband
disturbances. Its performance is assessed by computing the covariance of the state error,
which requires the covariance matrices of the process and measurement aogeRQIn
practice, these matrices are seldom known a priori and it is necessary to approximate them
from measurements. Among the developed approaches, the two that have received most
attentionare based on linear relations between these mating<itter: 1) the covariance
function of the innovations fronany stable filteror 2) the covariance functiof the output
measurementd his pape reviews the two approaches and implements them on a numerical
example. The covariance of the state error is obthand, through various cases of the noted
example, it is shown how this variable is affectedsignal durationnumber of lags in the
correlation functionsand the initial gain of the filter in the innovations approach
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INTRODUCTION

The basic ideani estimation theory is to obtain closkdp improved approximations of
the true responsd&his can be achieved with an observer, also known as a state estimator,
which usesthe information encoded in discrepancies between observations and open loop
model predictions.The Kalman Filter (KF) is the optimal observer for linear systems
subjeted to broad band disturbances. Mehra (1970) sHavat it can be specified through
an iterative process #t usesa model of the system arahly the covariance maix of the
measurement noise Riowever, it is desirable to compute the covariance matrix of the
process noise Q as well, as it is requiteccomputethe covariance of the staggror P; a
means ofssessing the KF's performance.

In practice matricesQ and Rare seldom known and one is faced with thesgion of how
to specify them. Investigations into their approximation from measurernegé soon after
the KF was introducedand continue presently. This paper reviews two of the developed
approachesone based on the relationship of these matrices to the covariance function of the
innovations from an arbitrary observer, and the other on the relation to the covariance
function ofthe output measurements.

Heffes (1966) derived an expression for the covariance of the state error of any suboptimal
filter as a function of Q and R. Mehra (1970) built off this expression to derive the
innovations correlation approach for extractingsthenatrices. While this was a significant
development, the approach did not offer a complete solution to the problem of estimating Q
and R; specifically, inaccuracy existed due to unavoidable errors that lied in the estimation of
the covariance of the inmations. Some modifications that could lead to improved
performance were noted by Neethling and Young (1974), namely: 1) enforcement of
symmetry 2) enforcement of seqefinitiveness in the covariance matrices and 3)
formulation of the approach as an odetermined weighted least squares problem.

In addition to the noted modifitans, performance ialsoaffected by theselection of the
initial gain. Mehra (1972) suggestedhat estimations ofQ and Rcould beimproved by
repeating the computations usjras an initial gainthe filter gain obtaned fom the first
iteration This contentionwasfound by Carew and Bellanger (1974) to be generally untrue.
As these authors noted,dhe starts with the exact Kalman gain in a first iteration, the results
for Q and R given the approximations due to finite duratiare such that the correct gain is
not confirmed. Guidelines on how this initial gain should be selected for typical applications
would be useful, but have yet to be put foSleme observationsn the topic are presented in
this paper.

Regardingthe output correlation approach, it was developed around the same time and is
presented in a paper by Mehra (1972Yistinguishes itself by having simpler formulations
and not requiring an initial gai Furthermore, as noted by Mehra (1972), the approach has
two additional limitations over the innovations approach, namely: that the output must be
stable, and secondly, that because the output is more correlated than the innovations, this
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approach provies less efficient estimations of Q and R. As for similarities between the
approaches, muclike the errors that result iestimating the covariance of the innovations,
the output measurements also contain error and lead to inaccuracy in the outputacorrelat
approach.

It is opportune to note that some recent work on the estimation of Q and R has taken place
in the structural health monitoring community. The work appears to have been done in
isolation of the noted classical worRéuen et al. 2007)and acordingly, has influenced the
motivation behind this paper. Thus, by offering@cise review of the correlation based
approacheghis paper inends to bring attention to thimportantmaterial forusein structural
engineering applicationsThe rest ofthe paper is organizeduch that: the next section
provides abrief summary of the KF particularized to a time invariant linear systeifm wi
stationary disturbances; the following two sections rextevformulations to estimate Q and
R using the inneationrs and output correlations; and to conclude the paper, theae is
numerical example anarief summary of the main points.

THE KALMAN FILTER

Consider a time invariant linear system with unmeasured disturbances w@yaitable
measurements y(t) that atmearly related to the state vector x(t). The system has the
following description in sampled time

X1 = AX + By @)
Y, =Cx, +v, 2

where 4! I ™ BI I ™ gpd C! ! ™ are the transition, input to state and state to
output matrices,y, € °™' is the measurement vector ang ! | ™ is the state. The
sequencew, ! ! ™is known as the process noise apde ! ™' is the measureemt
noise. In the treatment heng,is assumed that these are uncorrelated Gaussian stationary
white noise sequences with zero mean and covariar@eaotl R namely

Ew)=0 Eww)=qQ/, (3a,b)
E(v)=0 EMVv,")=R/ (4a,b)
E(vw')=0 5)

where /. denotes the Kronecker delta functiand ! {) denotes expectatiorfzor the
system in eq4.and2 the KF estimate of the state can be computed from

R, = AR (6)
X =Q +K(y ! CP (7)
where § is the estimate after the information from the measurement at time k isitéden

consideration andk, is the estimate before. The (steady state) Kalman gain K can be
expressed in a number of alternative ways, a popular one is (Simon 2006)
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K =PC"(CPC" +R)™ (8)
where P, the steady state covariance of the state error, is the solution of the Riccati equation

P=A(P! PC"(CPC"+ R) 'CP)A"+ BOB" 9)
The KF provides an estimate of tlsate for whichP is minimal. The filter is initialized as
follows

%, = E[%] (10)
By = E[(x, = %,)(x, _)eo)T] (11)

INNOVATIONS CORRELATION APPROACH FOR Q AID RESTIMATION

We begin withthe expression for the covariance function ofitim@vation process for any
stable observer with gaingkAs shown by Mehra (1970) this function is

l,=CPC" +R jo= (12
I, =C[A(I! KO AL PC"! K{CPCH R)] j> 0 (13

where the covariance of theate error in the steady state, as shown by Heffes (1966), is the
solution of the Riccati equation

P=AI! KOPI KO A+ AK RK' A BQB (14)

Estimation of PC
Listing explicitly the covaance function for lags one tmne has

|, =CA(PC" ! K, (15
l,=C[A(l'! KOJAPC! Kb (16)
l,=C[A(I'' KOI?APC'! K, (17)
| =CIAI-K Ol A PC - Kb (19
from where one can write
L=Z(PC"! K) (19
In which,
1, ] CA
l, CIAT-K,O)]A
L=l Z=|C[AI-K,COF A (20a,b)

) [erai-kora
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As can be seen, matrix 2 the observability block of aobserver whose gain isoipost
multiplied by the transition matrix A. On the assumption that the closed lostpbte and
observableone concludes that Z attains full column rank wheis no larger than the order
of the systemn. Accepting that the makr is full rank onefinds that the unique least square
solution to eq.19 is

PC" =K, +Z'L (21

where Z' is the pseuddinverse of Z. On the premise that the model is known without
error (which is a strong assumptioneterror in solving eq.21 for PQesults from the
covariance of the innovations being an approximdtiom finite duration signals.

Estimation of R
Having obtained an estimate for PGhe covariance of the output noise R can be
estimated from eq.12 as

R=Q1 C(RE) (22)
where the hats are added to emphasize that the quantities are estimates.

Estimation of Q

Derivation of an expression to estimate Q is significantly more involved than ttierdRe
The process begins by replacing, in eq.14, the covariance R by its expression in terms of the
autocorrelation at zero lag. After some algebra one gets

P=APA" +M +BOB" (23

where
M=A[!KCP PC K% K|KTA (24

Now consider a recursive solution for Pei.23. In a first substitution one has
P=A(APA" +M +BOB")A" +M +BOB" (25)
or
P=A*P(A*)" + AMA" + ABOB" A" +M +BOB" (26)
and aftelg substitutions one gets

P AP+ S AM AT +S ABQB( AT 27

=0

Before solvingeq.27 for Qit is first necessary to extract the set of equations for which only
knowledge of PC (estimated by eq.21) is necessary. These equations are attained-by post
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multiplying both sidesfoeq.27 by € and premultiplying by CA®. This gives
q-1 g-1
CAPC" =CP(A") C" +CA™* E A MANCT +CA™1 2 A’'BOB" (A)Y'C” (29
7=0 7=0

Given that P is symmetric, the CP product to thetrajithe equal sign can be expressed as
(PC™)", and one has

qz_ICAj‘qBQg(A)T C=CAPC-( POT( AT é-qzl cat M AT T (29

For convenience we transpose both sides of eq.29 and get

q-1 ) ) g1 . .
2 CA’BOB" (A47")' C" =(PC") (4*)' C" -CA'PC" - E CAM(A™"C" (30
. 4

J=0

where weOve accounted for the fact that M isrsstnical. To shorten eq.30 we define

F.=CA’'B (31
G =B (A C (32)
and
q-1
s, =(PCT)(A4") C" -CA*PC" - E CA'M (47" C" (33
7=0
So eq.30 becomes
q-1
ZITJQGJ. =s, (34)
j=

Applying thevec operator to both sides of eq.34 one has

%1 (G} " F3tvec(Q)= vec(s,) (35)

Jj=0
where® denotes the Kronecker product. Eq.35 can be evaluated for asgmatyes as one

desiresalthoughit is evident that all the equations obtairsed not necessarimdependent.
Selectingg from one top gives

Hlvec(Q)=S (36)
where
h veq )
h, = E(GJT oF) H-|"| s-[V*4? (37a,b,0)
; h, veq )

Eq.36 is theexpression used ithe innovations approach to obtain an estimate of Q. From its



Proceedings of the IMAXXVIII, February 1-4, 2010, Jacksonville, FloridedSA
Society of Experimental Mechanics

inspection one finds that H has dimensiorfspm r?, where we recall thah andr represent
the numbers of outputs and independent disturbances, respectively.

Structure in Q
The matrix Q is symmetrical anchn often be assumediagonal The constraints of
symmetry and/or a diagonal nature of Q can be reflected in a linear transformation of the form

ved Q=T vet Q (38

wherevec(Qy) is the vector of unknown entries in Q after all the constraints are imposed. In
the most general case, where only symmetry is imposed, the dimension af T!ig !

1! /! . However, sincestructural engineering problems are such that the largest possible value
of r is n/2, Thas a maximum dimension of ! ! (! ! 1111 In themost general case in
structures,therefore, the matrix H, aftesymmetry is imposed is ! '! x!'!Il +11/1. A
necessary (albeit not sufficient) condition for a unique solution for Q, thereifona,!

nl Hnr,

Enforcing Positive Serrbefinitiveness

By definition, the true matrix Q is positive semefinite (i.e., all its eigenvalues are !0)
however,due to approxirations,the least squargolution may not satisfthis requirement. In
the general case one can satisfy positive skfinitiveness by recasting the problem as an
optimization with constraints. Namelyminimize the norm of!! xvec(! )! I"# (! )!
subject to the constraint that all eigenvalues of Q Tlis problem is particularly simple for
our case, where Q is diagonia.this scenario thentries invec(Q) are the eigenvalues and all
that is required is to enre that they are not negativesdlhereis a suitable application for
the always converging neamegative least squares solution (Lawson and Hah8@d) This
algorithm is used for the numerical example provided at the end of this paper.

OUTPUT CORRELATION A2PROACH FOR Q AND HESTIMATION

As in the previous case, it is assumed that the state is stationary and that the process and
measurement noise are whated uncorrelated with each otheamely

E(Xk+1 )<<r+1) =1 (39)
E(%\)=0 (40)
E(xw)=0 (41)

E(/ v)=0 (42
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Estimation of R

The covariance function of the output is

L= E(Yei %)

Substituting eqs.2 and enforcing the assumptions-#246ne gets

1 =CE(x.%) C
From eq.1 one can show that

XeiX = Ax X + ATBy X+ A By, X+E+ By, ¥

Taking expectations on both sides of eq.45 gives

E(%i%) = AE(% %)
which when substituted into eq.44 gives

A,=CZC'+R for i=0
Il =CAR C' for iD
Defining

G: E(Xﬁl%)

andsubstituting egs.1 and 2, themposing the assumptions in eqs4®one gets
G=AC

Writing out the covariance function in eq.48 for i=1,gBne has

#"1.$ (()/oC )&

't CA) T
= A*C

T )

/

s o)
or, substituting Eq.50 into Eq.51 and solving fook& has

Al

AZ
G=0h,-

A

p

(43

(44)

(49

(46)

(47)
(49)

(49

(50

(51

(52
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From eg47 and eq.50 one gets

Estimation of Q
Substituting eq.1 into eq.39 and enforcihg bperating assumptiogs/es

l =A A +BQB (549

Applying thevec operator to eqs.54 and eq.50 one obtains

ved")= (I (A A)Y(B Bvetq (59
and
veG=(Cl A vee) (56)
Combining eqs.55 and Sfives
veq G=V!vet Q (57
where
v=(C" A(!l (A A)Y(B B (58)

Structure in Q
Theobservations made in the case of the innovations approach apply here also.

Enforcing Positive Serbefinitiveness

By definition the true matrix Q is positive sedefinite (i.e., all its eigenvalues are '0) but
the least square solution (due to approximations) may not lead to a solution that satisfies this
requirement. In the general case one can satisfy positivedegimitiveness by recasting the
problem as an optimization with constraints. Namely: minimize the norgVbfvec(Q) !
I"# (1)) subject to the constraint that all eigenvalues of Q ! 0. The problem is particularly
simple, however, in the case where Q iagdnal because the entries vec(Q) are the
eigenvalues and all that is required is to ensure that they are not negative. Tegaibre
least square solutipmeveloped by Lawson and Hanson (1974), is guaranteed to converge
and is used in the numericamulations of the next section. The observatimasieon sem
definitivenesshereapply equally in the & of the innovations correlation approach

NUMERICAL EXAMINATIO N

We consider thé>-DOF springmass structure depicted in fig.1. The fitstdamped
frequency is 2.66Hz and th& & 16.30Hz. Damping is classical with 2% in each mode and
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the stochastic disturbance, having a Q = 1, is applied at the 1st coordinate. Velocity
measurements are taken at the 3rd coordinate and the exact respoosgputed at 50Hz
sampling. Noise in the output is such that R = 5%TWvo hundred simulations are performed

on each of four different cases to investigate the affect of duration and number of lags on the
estimation of Q and R. The cases are definetblémvs: Case |. duration 200sec lags=40;
Case IlI: duration 200sec. lags=10; Case llI: duration 20sec. lags=40; and Case IV: duration

20sec. lags=10.
—l—

#" #$ #% #& #'

I

Fig.1 5-DOF gring-mass structure (Fms = 0.05;k1,ks,ks,k; =100; k,Ks,ke=120)

The estimates of the Q and R obtained using presented methodseadg state error
covariance matrices are calculated for each Q andufex from eq.9. The negative
estimates of R are assumed to be zero because the eq.9 requires the Q and R have to be
positive definite.Results are presented as scatter plots of R vs Q in figs. 2 and the
histogram plots of state error covariance irsfggand 5 The xaxis is the relative frequency

in the figs 4 and 5and the m, s and t are the mean, standandui@v and true value.;Rs the

j™ element of the diagonals

The basic observations are as followsfig4 and figs

1. In general the innovations approach performed better than the output correlation
scheme.

2. Increaing the number of lags improvedcuracy in the innovations approach but in
the output covariaze method the opposite result wastained.Examination of why
this is the case is currently ongoing.

3. As expected, the duration of the signals used in the calculations plays a critical role in
the accuracwttained.

Influence of the Initial Gain

A question of interest is how selection of the initial gain in the innovations approach
affects accuracyintuitively one expects that the closer the initial guess is to the true Kalman
gain the moreccurate the results will be. It appears from inspection, however, that this is not
the case. Specifically, looking at eqs.20 and 21 one notes that the existence of very small
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singular values in Z will increase the vulnerability of 'P® error on the empgtal
innovations. These singular values occur if some poles of the closed loop observer are small
enough to become negligible for powers less than the system order; in the context of the
Kalman filter, this occurs when the measurement noise is very shmalexemplify the
previous observations, we consider the same system illustrated in fig.1, except that output
measurements are assumed available not only atlicate 3, but also at 5. Figghows
histograms of Q based on 200 simulations for the caseewtherinitial gains are: a) zero b)

the exact KF and c) a filter based on Q=1, R=3*I. The duration of the signals is 40 secs and
10 lags are used. As can be seen, the result when the initial gain is the exact Kalman is the
most precise, which is the resuhe intuitively anticipates. Fig,7however, illustrates
analogous results for the case where the measurement noise is decreased by 3 orders of
magnitude. As can be seen, in this case (a) and (c) are (dbgediatical to those in fig.6

but the resus are poor when the initial gain is the exact Kalman.
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Fig.4 Histograms of the first five diagonal elements of the state error covariance obtained
using the estimates of Q and R from innovations approach.
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Fig.5 Histograms of the first five diagonal elements of the state error covariance obtained
using the estimates of Q and R from output approach.
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Fig.6 Histograms of Q with measurement noise R 26k a) gain = 0, b) gain = exact KF
andc)gain=KFforQ=1, R=3x]

X 0.25 0.35 0.25
n mean=1.455 mean=0.997
S mean=0.988 0.30 | -
E 0.20 (a) $td=0.098 std=0.866 0.20 std=0.076
Y. 0.25 -
0.15 -1 0.20 i 0.15 (C) -
(b)
Ro.10 4 0 T ow} -
0.10 -
0.05 f =1 0.05 F -
0.05 -

Fig.7 Histograms of Q with measurement noise R 6k a) gain = 0, b) gain = exact KF
andc)gain=KFforQ=1, R=3x]

CONCLUDING COMMENTS

This paper attempt® givea concisedescription of thennovations and output correlation
methods for estimating the covariance of the process and measurement noise .Qlaad R
operating assumptions are that the system is linear and time invariant and that the
computations can bearried out offline.The innovations approach leads to expressions that
are more complex than the output covariance scheme but the differences are not important
when it comes down toomputer implementatiorit is shown that when selecting the initial
gainin the innovations approach one should be careful not to create a model that has some
small closedoop poles. The reasoning behind this is that the small poles will cause the
observability block (of the observer) to become poorly conditioned and rasaliass of
accuracy in the estimation. Furthermore, it is shown that the foregoing consideration applies
even in the case where the initial gain is the exact Kalman filter.
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