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ABSTRACT 
 

The Kalman Filter (KF) is the optimal observer for linear systems subjected to broadband 
disturbances. Its performance is assessed by computing the covariance of the state error, 
which requires the covariance matrices of the process and measurement noise Q and R. In 
practice, these matrices are seldom known a priori and it is necessary to approximate them 
from measurements. Among the developed approaches, the two that have received most 
attention are based on linear relations between these matrices and either: 1) the covariance 
function of the innovations from any stable filter or 2) the covariance function of the output 
measurements. This paper reviews the two approaches and implements them on a numerical 
example. The covariance of the state error is obtained and, through various cases of the noted 
example, it is shown how this variable is affected by signal duration, number of lags in the 
correlation functions, and the initial gain of the filter in the innovations approach. 

 
  

                                                
1 PhD Candidate 
2 PhD Student 
3 Assoc. Professor 



Proceedings of the IMAC-XXVIII, February 1-4, 2010, Jacksonville, Florida, USA 
Society of Experimental Mechanics 

INTRODUCTION 
 

The basic idea in estimation theory is to obtain closed-loop improved approximations of 
the true response. This can be achieved with an observer, also known as a state estimator, 
which uses the information encoded in discrepancies between observations and open loop 
model predictions. The Kalman Filter (KF) is the optimal observer for linear systems 
subjected to broad band disturbances. Mehra (1970) showed that it can be specified through 
an iterative process that uses a model of the system and only the covariance matrix of the 
measurement noise R. However, it is desirable to compute the covariance matrix of the 
process noise Q as well, as it is required to compute the covariance of the state error P; a 
means of assessing the KF's performance. 

In practice, matrices Q and R are seldom known and one is faced with the question of how 
to specify them. Investigations into their approximation from measurements began soon after 
the KF was introduced and continue presently. This paper reviews two of the developed 
approaches: one based on the relationship of these matrices to the covariance function of the 
innovations from an arbitrary observer, and the other on the relation to the covariance 
function of the output measurements.  

Heffes (1966) derived an expression for the covariance of the state error of any suboptimal 
filter as a function of Q and R. Mehra (1970) built off this expression to derive the 
innovations correlation approach for extracting these matrices. While this was a significant 
development, the approach did not offer a complete solution to the problem of estimating Q 
and R; specifically, inaccuracy existed due to unavoidable errors that lied in the estimation of 
the covariance of the innovations. Some modifications that could lead to improved 
performance were noted by Neethling and Young (1974), namely: 1) enforcement of 
symmetry 2) enforcement of semi-definitiveness in the covariance matrices and 3) 
formulation of the approach as an over-determined weighted least squares problem. 

In addition to the noted modifications, performance is also affected by the selection of the 
initial gain. Mehra (1972) suggested that estimations of Q and R could be improved by 
repeating the computations using, as an initial gain, the filter gain obtained from the first 
iteration. This contention was found by Carew and Bellanger (1974) to be generally untrue. 
As these authors noted, if one starts with the exact Kalman gain in a first iteration, the results 
for Q and R, given the approximations due to finite duration, are such that the correct gain is 
not confirmed. Guidelines on how this initial gain should be selected for typical applications 
would be useful, but have yet to be put forth. Some observations on the topic are presented in 
this paper. 

Regarding the output correlation approach, it was developed around the same time and is 
presented in a paper by Mehra (1972). It distinguishes itself by having simpler formulations 
and not requiring an initial gain. Furthermore, as noted by Mehra (1972), the approach has 
two additional limitations over the innovations approach, namely: that the output must be 
stable, and secondly, that because the output is more correlated than the innovations, this 
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approach provides less efficient estimations of Q and R. As for similarities between the 
approaches, much like the errors that result in estimating the covariance of the innovations, 
the output measurements also contain error and lead to inaccuracy in the output correlation 
approach. 

It is opportune to note that some recent work on the estimation of Q and R has taken place 
in the structural health monitoring community. The work appears to have been done in 
isolation of the noted classical works (Yuen et al. 2007), and accordingly, has influenced the 
motivation behind this paper. Thus, by offering a concise review of the correlation based 
approaches, this paper intends to bring attention to this important material for use in structural 
engineering applications. The rest of the paper is organized such that: the next section 
provides a brief summary of the KF particularized to a time invariant linear system with 
stationary disturbances; the following two sections review the formulations to estimate Q and 
R using the innovations and output correlations; and to conclude the paper, there is a 
numerical example and brief summary of the main points. 
 
THE KALMAN FILTER 
 
 Consider a time invariant linear system with unmeasured disturbances w(t) and available 
measurements y(t) that are linearly related to the state vector x(t). The system has the 
following description in sampled time 

 1k k kx Ax Bw+ = +  (1) 

 k k ky Cx v= +  (2) 
             
where nxn A∈ ° , nxr B∈ °  and  mxn C∈ °  are the transition, input to state and state to 
output matrices, mx1  ky ∈ °   is the measurement vector and nx1  kx ∈ °  is the state. The 
sequence nx1  kw ∈ ° is known as the process noise and mx1  kv ∈ °  is the measurement 
noise. In the treatment here, it is assumed that these are uncorrelated Gaussian stationary 
white noise sequences with zero mean and covariance of Q and R, namely  

 ( 0 ()    )Tk k j kjw wE E w Qδ= =  (3a,b) 

 ( 0 ()    )Tk k j kjv vE E v Rδ= =  (4a,b) 

 )( 0T
k jE v w =  (5) 

 
where kjδ  denotes  the Kronecker delta function and ( )Ε ⋅  denotes expectation. For the 
system in eqs.1 and 2 the KF estimate of the state can be computed from 
 
 1ˆ ˆk kx Ax− +

+ =  (6) 

 ˆ ˆ ˆ( )k k k kx x K y Cx+ − −= + −  (7) 
 
where ˆkx

+  is the estimate after the information from the measurement at time k is taken into 
consideration and ˆkx

−  is the estimate before. The (steady state) Kalman gain K can be 
expressed in a number of alternative ways, a popular one is (Simon 2006) 
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 1( )T TK PC CPC R −= +  (8) 
 
where P, the steady state covariance of the state error, is the solution of the Riccati equation 
 
 1( ( ) )T T T TP A P PC CPC R CP A BQB−= − + +  (9) 
The KF provides an estimate of the state for which P is minimal. The filter is initialized as 
follows 

 0 0ˆ [ ]x E x+ =  (10) 

 0 0 0 0 0ˆ ˆ[( )( ) ]TP E x x x x= − −  (11) 
  
INNOVATIONS CORRELATION APPROACH FOR Q AND R ESTIMATION 
 

We begin with the expression for the covariance function of the innovation process for any 
stable observer with gain K0. As shown by Mehra (1970) this function is 
 

             0T
jl CPC R j= + =  (12) 

 1
0 0[ ( )] [ ( )]            0j T T

jl C A I K C A PC K CPC R j−= − − + >  (13) 
 
where the covariance of the state error in the steady state, as shown by Heffes (1966), is the 
solution of the Riccati equation 
 

 0 0 0 0( ) ( )T T T T TP A I K C P I K C A AK RK A BQB= − − + +  (14) 
 
Estimation of PCT 

Listing explicitly the covariance function for lags one to l one has 
 

              1 0 0( )Tl CA PC K l= −  (15) 
              2 0 0 0[ ( )] ( )Tl C A I K C A PC K l= − −  (16) 
              2

3 0 0 0[ ( )] ( )Tl C A I K C A PC K l= − −  (17) 
              .....................  
              1

0 0 0[ ( )] ( )Tl C A I K C A PC K l−= − −l
l  (18) 

 
from where one can write 
 

 0 0( )TL Z PC K l= −  (19) 
 
In which,  
 

 

1

2 0
2

3 0

1
0

[ ( )]
       [ ( )]

... ......
[ ( )]

l CA
l C A I K C A

L l Z C A I K C A

l C A I K C A−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = −
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦

l
l

 (20a,b) 
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As can be seen, matrix Z is the observability block of an observer whose gain is K0 post-
multiplied by the transition matrix A. On the assumption that the closed loop is stable and 
observable, one concludes that Z attains full column rank when l is no larger than the order 
of the system, n. Accepting that the matrix is full rank one finds that the unique least square 
solution to eq.19 is 
 

 †
0 0

TPC K l Z L= +  (21) 
 
where †Z  is the  pseudo-inverse of Z . On the premise that the model is known without 
error (which is a strong assumption), the error in solving eq.21 for PCT results from the 
covariance of the innovations being an approximation from finite duration signals.  
 
Estimation of R 

Having obtained an estimate for PCT, the covariance of the output noise R can be 
estimated from eq.12 as    
                             

 0̂
ˆˆ ˆ( )TR l C PC= −  (22) 

 
where the hats are added to emphasize that the quantities are estimates. 
 
Estimation of Q  

Derivation of an expression to estimate Q is significantly more involved than the one for R. 
The process begins by replacing, in eq.14, the covariance R by its expression in terms of the 
autocorrelation at zero lag. After some algebra one gets  
 

 T TP APA M BQB= + +  (23) 
 
where 
 

 0 0 0 0 0[ ]T T T TM A K CP PC K K l K A= − − +  (24) 
 
Now consider a recursive solution for P in eq.23. In a first substitution one has 
 
 ( )T T T TP A APA M BQB A M BQB= + + + +  (25)  
or 
 
 2 2( )T T T T TP A P A AMA ABQB A M BQB= + + + +  (26)  
and after q substitutions one gets 
 

 
1 1

0 0
( ) ( ) ( )

q q
q q T j j T j T j T

j j
P A P A A M A A BQB A

− −

= =

= + +∑ ∑  (27) 

 
Before solving eq.27 for Q it is first necessary to extract the set of equations for which only 
knowledge of PCT (estimated by eq.21) is necessary. These equations are attained by post-



Proceedings of the IMAC-XXVIII, February 1-4, 2010, Jacksonville, Florida, USA 
Society of Experimental Mechanics 

multiplying both sides of eq.27 by CT and pre-multiplying by CA-q. This gives 
 

 
1 1

0 0
( ) ( ) ( )

q q
q T q T T q j j T T q j T j T T

j j
CA PC CP A C CA A M A C CA A BQB A C

− −
− − −

= =

= + +∑ ∑  (28) 

 
Given that P is symmetric, the CP product to the right of the equal sign can be expressed as 
( )T TPC , and one has  
 

 
1 1

0 0
( ) ( ) ( ) ( )

q q
j q T j T T q T T T q T T j q j T T

j j
CA BQB A C CA PC PC A C CA M A C

− −
− − −

= =

= − −∑ ∑  (29) 

   
For convenience we transpose both sides of eq.29 and get 
 

 
1 1

0 0
( ) ( ) ( ) ( )

q q
j T j q T T T T q T T q T j j q T T

j j
CA BQB A C PC A C CA PC CA M A C

− −
− − −

= =

= − −∑ ∑  (30) 

 
where we’ve accounted for the fact that M is symmetrical. To shorten eq.30 we define 
 
 j

jF CA B=  (31) 

 ( )T j q T T
jG B A C−=  (32) 

 
and 
 

 
1

0
( ) ( ) ( )

q
T T q T T q T j j q T T

q
j

s PC A C CA PC CA M A C
−

− −

=

= − −∑  (33) 

 
So eq.30 becomes 
  

 
1

0

q

j j q
j
F QG s

−

=

=∑  (34) 

 
Applying the vec operator to both sides of eq.34 one has 
 

 
1

0
( ) ( ) ( )

q
T
j j q

j
G F vec Q vec s

−

=

⊗ ⋅ =∑  (35) 

 
where⊗ denotes the Kronecker product. Eq.35 can be evaluated for as many q values as one 
desires, although it is evident that all the equations obtained are not necessarily independent. 
Selecting q from one to p gives 
 
 ( )H vec Q S⋅ =  (36)  
where 
 

 

1 1

1
2 2

0

( )
( )

( )          
.. ..

( )

q
T

q j j
j

p p

h vec s
h vec s

h G F H S

h vec s

−

=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⊗ = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑  (37a,b,c) 

 
Eq.36 is the expression used in the innovations approach to obtain an estimate of Q. From its 
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inspection one finds that H has dimensions m2 p x r2, where we recall that m and r represent 
the numbers of outputs and independent disturbances, respectively.  
 
Structure in Q 

The matrix Q is symmetrical and can often be assumed diagonal. The constraints of 
symmetry and/or a diagonal nature of Q can be reflected in a linear transformation of the form 
 
 ( ) ( )rvec Q T vec Q= ⋅  (38) 
 
where vec(Qr) is the vector of unknown entries in Q after all the constraints are imposed. In 
the most general case, where only symmetry is imposed, the dimension of T is n!×r(r+
1)/2. However, since structural engineering problems are such that the largest possible value 
of r is n/2, T has a maximum dimension of n!×n(n+ 1)/4. In the most general case in 
structures, therefore, the matrix H, after symmetry is imposed, is m!n×n(n+ 1)/4. A 
necessary (albeit not sufficient) condition for a unique solution for Q, therefore, is m ≥
n+ 1  /2. 

   
Enforcing Positive Semi-Definitiveness 

By definition, the true matrix Q is positive semi-definite (i.e., all its eigenvalues are ≥0), 
however, due to approximations, the least square solution may not satisfy this requirement. In 
the general case one can satisfy positive semi-definitiveness by recasting the problem as an 
optimization with constraints. Namely, minimize the norm of (𝑉×𝑣𝑒𝑐 𝑄 − 𝑣𝑒𝑐 𝐺 ) 
subject to the constraint that all eigenvalues of Q ≥ 0. This problem is particularly simple for 
our case, where Q is diagonal. In this scenario the entries in vec(Q) are the eigenvalues and all 
that is required is to ensure that they are not negative. Also, here is a suitable application for 
the always converging non-negative least squares solution (Lawson and Hanson 1974). This 
algorithm is used for the numerical example provided at the end of this paper.  
 
OUTPUT CORRELATION APPROACH FOR Q AND R ESTIMATION 
 
As in the previous case, it is assumed that the state is stationary and that the process and 
measurement noise are white and uncorrelated with each other, namely  
 
 1 1( Σ)T

k kE x x+ + =  (39) 

 )( 0T
k kE x v =  (40) 

 )( 0T
k kE x w =  (41) 

 )( 0T
k kE vω =  (42) 
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Estimation of R 
The covariance function of the output is 

 

 ( )Ti k i kE y y+Λ =  (43) 
 
Substituting eqs.2 and enforcing the assumptions in 40-42 one gets 
 

 ( )Λ ( )T T
i k i kC E x x C+=  (44) 

 
From eq.1 one can show that 
 

 1 2
1 1

T i T i T i T T
k i k k k k k k k k i kx x A x x A Bw x A Bw x Bw x− −
+ + + −= + + +…+  (45) 

 
Taking expectations on both sides of eq.45 gives 
 

 (( ) )T i T
k i k k kE Ex x A x x+ =  (46) 

 
which when substituted into eq.44 gives 
 
 0Λ Σ 0TC C R for i= + =  (47) 

 Λ Σ 0i T
i C A C for i= ≠  (48) 

 
Defining  
 

 1( )Tk kG E x y+=  (49) 
 
and substituting eqs.1 and 2, then imposing the assumptions in eqs.40-42 one gets 
 
 Σ TG A C=  (50) 
 
Writing out the covariance function in eq.48 for i=1,2…p one has 
 

 

1

2

1

. .
T

p
p

C
CA

A C

CA −

Λ⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎢ ⎥Λ⎪ ⎪ ⎢ ⎥= Σ⎨ ⎬ ⎢ ⎥⎪ ⎪ ⎢ ⎥⎪ ⎪Λ ⎣ ⎦⎩ ⎭

 (51) 

 
or, substituting Eq.50 into Eq.51 and solving for G one has 
 

 

1

2†

.p

p

G Ob

Λ⎧ ⎫
⎪ ⎪Λ⎪ ⎪

= ⋅ ⎨ ⎬
⎪ ⎪
⎪ ⎪Λ⎩ ⎭

 (52) 
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From eq.47 and eq.50 one gets 
 
 1

0ΛR CA G−= −  (53)  
Estimation of Q 

Substituting eq.1 into eq.39 and enforcing the operating assumptions gives  
 

 Σ Σ T TA A BQB= +  (54) 
 
Applying the vec operator to eqs.54 and eq.50 one obtains 
 

 ( ) 1( ) ( ) ( ) ( )vec I A A B B vec Q−Σ = − ⊗ ⊗  (55) 
 
and 
 

 ( )( ) ( )vec G C A vec= ⊗ Σ  (56) 
 
Combining eqs.55 and 56 gives 
 
 ( ) ( )vec G V vec Q= ⋅  (57) 
 
where 
 

 ( )( ) 1( ) ( )V C A I A A B B−= ⊗ − ⊗ ⊗  (58) 
 
Structure in Q 

The observations made in the case of the innovations approach apply here also.  
 
Enforcing Positive Semi-Definitiveness 

By definition the true matrix Q is positive semi-definite (i.e., all its eigenvalues are ≥0) but 
the least square solution (due to approximations) may not lead to a solution that satisfies this 
requirement. In the general case one can satisfy positive semi-definitiveness by recasting the 
problem as an optimization with constraints. Namely: minimize the norm of (𝑉×𝑣𝑒𝑐 𝑄 −
𝑣𝑒𝑐 𝐺 ) subject to the constraint that all eigenvalues of Q ≥ 0. The problem is particularly 
simple, however, in the case where Q is diagonal because the entries in vec(Q) are the 
eigenvalues and all that is required is to ensure that they are not negative. The non-negative 
least square solution, developed by Lawson and Hanson (1974), is guaranteed to converge 
and is used in the numerical simulations of the next section. The observations made on semi-
definitiveness here apply equally in the case of the innovations correlation approach. 
 
NUMERICAL EXAMINATION 
 

We consider the 5-DOF spring-mass structure depicted in fig.1. The first un-damped 
frequency is 2.66Hz and the 5th is 16.30Hz. Damping is classical with 2% in each mode and 
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the stochastic disturbance, having a Q = 1, is applied at the 1st coordinate. Velocity 
measurements are taken at the 3rd coordinate and the exact response is computed at 50Hz 
sampling. Noise in the output is such that R = 5x10-4. Two hundred simulations are performed 
on each of four different cases to investigate the affect of duration and number of lags on the 
estimation of Q and R. The cases are defined as follows: Case I: duration 200sec lags=40; 
Case II: duration 200sec. lags=10; Case III: duration 20sec. lags=40; and Case IV: duration 
20sec. lags=10.  

 

Fig.1 5-DOF spring-mass structure (m1-m5 = 0.05; k1,k3,k5,k7 =100; k2,k4,k6=120) 
 

The estimates of the Q and R obtained using presented methods and steady state error 
covariance matrices are calculated for each Q and R duplex from eq.9.  The negative 
estimates of R are assumed to be zero because the eq.9 requires the Q and R have to be 
positive definite. Results are presented as scatter plots of R vs Q in figs. 2 and 3 and the 
histogram plots of state error covariance in figs. 4 and 5. The x-axis is the relative frequency 
in the figs 4 and 5, and the m, s and t are the mean, standard deviation and true value. Pjj is the 
jth element of the diagonals.  
The basic observations are as follows: In fig4 and fig5   

 
1. In general the innovations approach performed better than the output correlation 

scheme. 
2. Increasing the number of lags improved accuracy in the innovations approach but in 

the output covariance method the opposite result was obtained. Examination of why 
this is the case is currently ongoing. 

3. As expected, the duration of the signals used in the calculations plays a critical role in 
the accuracy attained.   

Influence of the Initial Gain 
A question of interest is how selection of the initial gain in the innovations approach 

affects accuracy. Intuitively one expects that the closer the initial guess is to the true Kalman 
gain the more accurate the results will be. It appears from inspection, however, that this is not 
the case. Specifically, looking at eqs.20 and 21 one notes that the existence of very small 
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singular values in Z will increase the vulnerability of PCT to error on the empirical 
innovations. These singular values occur if some poles of the closed loop observer are small 
enough to become negligible for powers less than the system order; in the context of the 
Kalman filter, this occurs when the measurement noise is very small. To exemplify the 
previous observations, we consider the same system illustrated in fig.1, except that output 
measurements are assumed available not only at coordinate 3, but also at 5. Fig.6 shows 
histograms of Q based on 200 simulations for the case where the initial gains are: a) zero b) 
the exact KF and c) a filter based on Q=1, R=3*I. The duration of the signals is 40 secs and 
10 lags are used. As can be seen, the result when the initial gain is the exact Kalman is the 
most precise, which is the result one intuitively anticipates. Fig.7, however, illustrates 
analogous results for the case where the measurement noise is decreased by 3 orders of 
magnitude. As can be seen, in this case (a) and (c) are (essentially) identical to those in fig.6 
but the results are poor when the initial gain is the exact Kalman. 
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Fig.2 Innovations correlation approach Q-R estimations 

 

 

Fig.3 Output correlation approach Q-R estimations 
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Fig.4 Histograms of the first five diagonal elements of the state error covariance obtained 

using the estimates of Q and R from innovations approach.  

 
Fig.5 Histograms of the first five diagonal elements of the state error covariance obtained 

using the estimates of Q and R from output approach. 
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Fig.6 Histograms of Q with measurement noise R = 5e-4 x I: a) gain = 0, b) gain = exact KF 

and c) gain = KF for Q = 1, R = 3 x I  

 

 

Fig.7 Histograms of Q with measurement noise R = 5e-7 x I: a) gain = 0, b) gain = exact KF 
and c) gain = KF for Q = 1, R = 3 x I  

 
CONCLUDING COMMENTS 
 

This paper attempts to give a concise description of the innovations and output correlation 
methods for estimating the covariance of the process and measurement noise Q and R. The 
operating assumptions are that the system is linear and time invariant and that the 
computations can be carried out offline. The innovations approach leads to expressions that 
are more complex than the output covariance scheme but the differences are not important 
when it comes down to computer implementation. It is shown that when selecting the initial 
gain in the innovations approach one should be careful not to create a model that has some 
small closed-loop poles. The reasoning behind this is that the small poles will cause the 
observability block (of the observer) to become poorly conditioned and result in a loss of 
accuracy in the estimation. Furthermore, it is shown that the foregoing consideration applies 
even in the case where the initial gain is the exact Kalman filter. 
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